Journal of Chemical and Pharmaceutical Sciences

A REVIEW ON QUALITATIVE DETERMINATION OF DIFFERENT MEMBERS OF FLUOROQUINOLONE ANTI-BACTERIALS BY HPLC METHODS

^{1,2}RAVISANKAR P*, ²ANUSHA RANI K, ³DEVALA RAO G, ²DEVADASU CH

¹Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram – 631561 (T.N.) India.

²Department of Pharmaceutical Analysis and Quality Assurance, Vignan Pharmacy College, Vadlamudi, Guntur – 522213 (A.P) India.

³Department of Pharmaceutical Analysis, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.

*Corresponding author: E.Mail: banuman35@gmail.com, Mobile: 09000199106

ABSTRACT

Occurrence of new drug resistant strains of bacterial infections leads to the invention newer antibiotics. Fluoroquinolones are one of the most promising and vigorously pursued areas of contemporary anti-infective depicting broad spectrum and potent active class of drugs. Fluoroquinolones are the drugs in order to overcome the drawbacks of natural antibiotics. This review first time covers the applications of novel HPLC methods particularly to the determination of 3rd and 4th generation of Fluoroquinolones antibacterials either in dosage form, blood serum or in the biological fluids. In this review Tables 2-11 show the reported methods for nalidixic acid, Ciprofloxacin, Levofloxacin, Ofloxacin, Norfloxacin, Balofloxacin, Prulifloxacin, Moxifloxacin, Sparfloxacin, and Gatifloxacin respectively. Table 12 is concerned with the reported methods for the analysis of various fluoroquinolone antibiotics.

Key words: Fluroquinolones, Dosage forms, Biological fluids Estimation, Antibiotics.

1. INTRODUCTION

The discovery of antibiotics like Penicillins, Cephalosporins, amino glycosides tetracyclines and anti bacterials like Sulfonamides is a breakthrough in the treatment of infectious diseases. In order to overcome the drawbacks of natural antibiotics and synthetic antibacterial agents, a new class of antibiotics called semi-synthetic anti bacterial agents was introduced in the treatment of infectious diseases.

Starting with nalidixic acid, quinolone derivatives were introduced as anti-bacterials in 1962. Quinolone ring structure is shown in the following figure 1. Later some structural modifications were made to increase activity, safety and efficacy.

Figure.1.Quinolone ring structure

2. CHEMISTRY

Prototype quinolone Anti-bacterials, such as nalidixic acid (naphthpyridin nucleus) have narrow spectrum of activity. Addition of piperazinyl ring at 7th position broadened the activity. The molecular weight of fluoroquinolines is between 300-500 Daltons. Most of them occur in Zwitter ionic form. Pharmacophore required for significant anti-bacterial activity is 4-pyridone-3-carboxylic acid with a ring at 5th or 6th position. The brand names of different sorts of fluoroquinolones are shown in the Table 1 and the schematic representation of classification of fluoroquinolones is shown in the following scheme.

Figure.2.Quinolone ring with fluorine atom that broadens the activity

Figure.3.Nalidixic acid drug Structure

Journal of Chemical and Pharmaceutical Sciences

Table.1.Different brand names of nuoroquinoiones			
Marketed brand names			
Norbactin, Norflox, Norwin, Norvit, Alflox, Normax, Quinobid, Norilet.			
Tequin, Segat, Algat, Eligat, Gatilox, Gatispan, Q-Gat, Zigat, Zyquin, Ecogat.			
Loma day, Lomflox-400, Floxaday, Relom.			
Cifran, Adcip, Alcip, Anocip, Baycip, Cadiwin, Cipfun, Cipgen, Ciplo, Ciplox.			
Tarivid, Aflox, Aloflox, Armbid, Avicin, Bact-O, Bactorax, Bestoflox.			
Pelox, Peflobid, Perti, Piflasyn.			
Sparflox, Sparact, Sparcin, Spardac, Spartin, Sparzid, Spicy, Spike, Sap.			
Tavanic, Alefox, Day-5, Elflox, Enatome, Leon, Leviza, Levloc, Levobact.			
Avelox, Mahaflox, Morris, Moxicip, Staxom, Unomox.			
Factive, EG1, G-cin, Gametop, Gamiflox, Gembax, Gamibit, Gemibid, Gex.			
Alpruli, Percin, Prudila, Pruflox, Prulif, Prulin, Punox, Prulisoz, Pruibact.			

Nalidixic acid: It is the first of the synthetic quinolone antibiotics. In the technical sense, it is a naphthyridone, not a quinolone: its ring structure is a 1, 8 - naphthyridine nucleus that contains two nitrogen atoms, unlike quinoline, which has a single nitrogen atom. The structure of nalidixic acid is represented in the Figure 3 and the Application of HPLC to the determination of Nalidixic acid is represented in Table 2.

Material	Column	Mobile phase	Detection
Formulations	Machery- Nagel RP ₈ ,	$H_2O/acetonitrile/triethylamine (680:320:1)$	UV, 310 nm
	5 µm		
Pharmaceuticals	Alltech Anion R, 10	0.001 M TBCl ₃ and 0.005M heptanesulphonate in acetic acid	Fluor. 318,
	μm	pH 6.8 /methanol (11:9)	545 nm
Serum brain,	Wakosil 5 C _{18,} 5 µm	CH ₃ OH / acetonitrile/ 0.015 M KH ₂ PO ₄ containing sodium	UV, 255 nm
CSF		lauryl sulphate (3:2:5)	
Formulations	Hypersil, C ₁₈	water/ acetonitrile/triethylamine (600: 400 : 1)	UV, 254 nm
Cultured fish	Nucleosil, C ₁₈	THF/ acetonitrile/ H ₃ PO ₄ / H ₂ O (29:1:0 :06:69:94)	UV, 260 nm
Fish	Nucleosil 3,C ₁₈ , 3µm	Acetonitrile / methanol / 0.01 M oxalic acid of pH 3 (3:1:6)	UV, 290 nm

Table.2.Application of HPLC to the determination of Nalidixic acid

Ciprofloxacin: Ciprofloxacin is a synthetic anti bacterial agent shows broad spectrum of activity comes under the group of fluoroquinolones. The substance was developed in 1981 by the company Bayer corporation. Ciprofloxacin was determined in pharmaceuticals through its reaction with ferric chloride at 430 nm. The structure of Ciprofloxacin is shown in Figure 4 and the Application of HPLC to the determination of Ciprofloxacin is represented in Table 3.

Figure 4: Ciprofloxacin drug structure Table.3.Application of HPLC to the determination of Ciprofloxacin

Tuble application of TH 20 to the accommutation of orphonometric			
Material	Column	Mobile phase	Detection
Pharmaceuticals	Invertsil ODS 2	THF/ acetonitrile/ hexane sulphometa (2:1:17)	UV, 254 nm
Human aqueous	Novapak C ₁₈	Methanol/ acetonitrile/ 0.4M citric acid (3:1:10)	Fluor. 278 nm, (450nm)
humor	cartridge		
Body fluids	5 µm PLRP – S	0.02 M TCA / acetonitrile / methanol (37: 11: 2)	Fluor. 277 nm, (418nm)
Formulations	10 µm C ₁₈	Methanol / H_2O /acetic acid (840 : 159 : 1)	UV, 254 nm
Biological materials	Inertsil OSD -2	50% Aqueous methanol of pH 2.5	Fluor. 320, 545 nm
Plasma	CLC – shim pack	Methanol: 0.2 M ammonium acetate (8: 17)	UV, 280 nm
	ODS, 5 µm		
Plasma and chinchilla	Hypersil C ₁₈ , 5	NaH ₂ PO ₄ + triethylamine + SDS of pH 3/	Flour. 278 nm ; 456 nm
middle ear effusion	μm	acetonitrile (3: 2)	

www.	JCh	ps.com

Journal of Chemical and Pharmaceutical Sciences Table.3.Application of HPLC to the determination of Ciprofloxacin continution

Material	Column	Mobile phase	Detection
Serum	Bonadapak C ₁₈	Methanol / acetonitrile / phosphate buffer pH 2.8	Flour. 338 nm;
		(5: 4: 11)	455nm
Urine, serum, saliva	Sphere – 5- OD-	$0.1 \text{M KH}_2 \text{PO}_4$ / acetonitrile (1: 1)	UV , 280 nm
	5A		
Serum	KYWG-	KH_2PO_4 / methanol/ acetonitrile (56: 33: 11).	Flour .280, 455 nm
	C ₁₈ , 10 µm		
Serum	Nucleosil C ₁₈ ,	KH ₂ PO ₄ / H ₂ O/ tetrabutylammonium bromide/	UV, 277 nm
	3 µm	acetonitrile (12 : 6: 1: 1)	
Brain and CSF	Wakosil 5 C ₁₈	Sodium dodecylsulphonate in methanol / 0.02 M	Flour .277, 445 nm
		KH_2PO_4 (3: 2, adjusted to pH 2.5)	
Plasma micro samples	MB C ₁₈ Radial	(NH ₄) ₂ HPO ₄ (0.1 M) / acetonitrile / methanol/ (80/	Flour .277, 453 nm
_	pak 10 µm	13/7)	

Levofloxacin: Levofloxacin (trade names are Levaquin (US), Tavanic (EU), and others) is a broad spectrum antibiotic of the fluoroquinolone drug class, and the levo isomer of its predecessor Ofloxacin. Its spectrum of activity includes most strains of bacterial pathogens responsible for respiratory, urinary tract, gastrointestinal, and abdominal infections, including Gram negative (*Escherichia coli, Haemophilus influenza, Klebsiella pneumoniae, Legionella pneumophila, Moraxella catarrhalis, Proteus mirabilis, and Pseudomonas aeruginosa*), Gram positive (*Streptococcus pneumoniae, Staphylococcus epidermidis, Enterococcus faecalis, and Streptococcus pyogenes*), and atypical bacterial pathogens (*Chlamydophila pneumonia and Mycoplasma pneumonia*). Compared to earlier antibiotics of the fluoroquinolone class such as Ciprofloxacin, Levofloxacin exhibits greater activity toward Gram-positive bacteria but lesser activity toward Gram-negative bacteria, especially Pseudomonas aeruginosa. Levofloxacin and later generation fluoroquinolones are collectively referred to as "respiratory quinolones" to distinguish them from earlier fluoroquinolones which exhibited modest activity toward the important respiratory pathogen Streptococcus pneumonia.

Levofloxacin and other fluoroquinolones are valued for their broad spectrum of activity, excellent tissue penetration, and for their availability in both oral and intravenous formulations. Levofloxacin is used alone or in combination with other antibacterial drugs to treat certain bacterial infections including pneumonia, urinary tract infections, and abdominal infections. The structure of Levofloxacin is shown in the Figure 5 and the Application of HPLC to the determination of Levofloxacin is represented in Table 4.

Figure 5: Levofloxacin drug structure. Table.4.Application of HPLC to the determination of levofloxacin

Material	Column	Mobile phase	Detection
Human serum	Nucleosil C ₁₈	Water : acetonitril (6: 5)	UV, 293 nm
Pharmaceutical dosage	ACE C_{18} column	Mixture of) 5 % (V/V) triethylamine in	UV, 294 nm
forms		sodium dihydrogen ortho phosphate	
Rat plasma saliva	Phenomenex Luna C ₁₈	Acetonitrile : water (80 : 20 V/V)	UV, 296 nm

Ofloxacin: Ofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class considered to be a second-generation fluoroquinolone. The original brand, Floxin, has been discontinued by the manufacturer in the United States on 18 June 2009, though generic equivalents continue to be available. Ofloxacin was first patented in 1982 (European Patent Daiichi) and received approval from the U.S. Food and Drug Administration (FDA) on December 28, 1990. Ofloxacin is sold under a wide variety of brand names as well as generic drug equivalents, for oral and intravenous administration. Ofloxacin is also available for topical use, as eye drops and ear drops (marketed as Ocuflox and Floxin Otic respectively in the United States and marketed as Optiflox, eylox respectively in Jordan and Saudi Arabia.

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

Ofloxacin is a racemic mixture, which consists of 50% Levofloxacin (the biologically active component) and 50% of its "mirror image" or enantiomer dextrofloxacin. When Levofloxacin disks were not available in early clinical trials, a 5-pg Ofloxacin disk was substituted. The U.S. Food and Drug Administration (FDA) medical reviewers considered the two drugs to be one and the same and hence interchangeable. The structure of Ofloxacin is represented in the Figure 6 and the Application of HPLC to the determination of Ofloxacin is represented in Table 5.

Figure 6: Ofloxacin drug structure Table.5.Application of HPLC to the determination of Ofloxacin

Material	Column	Mobile phase	Detection
Aqueous humor	Novapak C _{18,}	0.4 M citric acid / methanol/ acetonitrile	Flour. 290, 500 nm
	4 µm	(10:3:1)	
Human saliva	Develosil	0.06 M sodium acetate of PH 2.5 / acetonitrile	UV, 300 nm
	(C ₁₈), 5 μm	(21:4)	
Human plasma	Separon SGX C ₁₈	5.5 % THF in 0.06 M KH ₂ PO ₄ of pH 2.6	Flour. 282, 450 nm
Human scalp hair	ODS 120 -T,	KH ₂ PO ₄ pH 2.6 / acetonitrile	Flour. 290, 460 nm
	5 µm	(41:9)	
Plasma and lung	Ultrabase RP 8, 5 µm	Citrate buffer of pH 4.8 / acetonitrile	Flour. 280, 500 nm
tissue		(17:3)	
Hair	TSK gel ODS $- 120 \text{ T}$,	Phosphate buffer of pH 2.6 / acetonitrile	Flour. 290, 460 nm
	5 µm	(41:9)	
Dosage form	Anion exchange vydac,	0.05 M phosphate buffer pH 7/ acetonitrile	UV, 297 nm.
	10 µm	(1:4)	
Human serum	Develosil ODS - 5 µm	0.5 % sodium acetate pH 2.5 / acetonitrile	UV, 300 nm
		(87:13)	
Serum	Develosil CN,	0.04 M NaH ₂ PO ₄ / 0.04 M H ₃ PO ₄ /methanol	UV, 300 nm
	5 µm	(2:5:3)	
Body fluids	Nucleosil 5, C_{18}	Acetonitrile / 0.005M tetrabutylammonium	Flour. 295, 418 nm
		phosphate pH 2	
Body fluids	Nucleosil 5, C_{18}	Acetonitrile / 0.05 M H ₃ PO ₄ containing	Flour. 310, 487 nm
		triethylamine, pH 2.8 (9:41)	

Norfloxacin: Norfloxacin is a synthetic chemotherapeutic antibacterial agent occasionally used to treat common as well as complicated urinary tract infections. It is sold under various brand names with the most common being Noroxin. In form of ophthalmic solutions it is known as Chibroxin. Norfloxacin is a first generation synthetic fluoroquinolone (quinolone) developed by Kyorin Seiyaku K.K. (Kyorin). The structure of Norfloxacin is represented in the Figure 7 and the Application of HPLC to the determination of Norfloxacin is represented in Table 6.

Fig 7: Norfloxacin drug structure.

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences Table.6.Applications of HPLC to the determination of Norfloxacin

Materials	Column	Mobile phase	Detection
Serum	C ₁₈ , 5 µm	10mM Triethylaminephosphate in 55%	UV, 226 nm
		acetonitrile of pH 4.8	
Dosage form	C ₁₈ ,5 μm	0.2 % H ₃ PO ₄ , pH 2 / acetonitrile (87 : 13)	UV, 275 nm
Serum	Spheri- 3, C ₁₈ , 3	11% acetonitrile in 0.01 M NaH ₂ PO ₄ , pH 2.5	UV, 279 nm
	μm	containing 0.001 M triethylamine	
Blood	Zorbax C _{18,} 5 µm	Methanol / TFA, 0.01 % (1:3)	Flour. 280, 418 nm
Tablets	Micropak- NH ₂ -	Acetonitrile /tetrabutylammonium hydroxide / o-	UV, 278 nm
	10, 10 µm	phosphoric acid/ water (10: 1.5 : 0: 167 : 100)	

Balofloxacin: The new fluoroquinolone Balofloxacin is a broad spectrum fluorinated quinolone anti- biotic prescribed for sinusitis chronic bronchitis UTI and exhibits excellent antibacterial activity against gram positive bacteria such as multiple drug resistant staphylococci and pneumococci it is sold under brand name of Q - roxin. The structure of Balofloxacin is represented in the Figure 8 and the Application of HPLC to the determination of Balofloxacin is represented in Table: 7.

Figure.8.Balofloxacin drug structure Table.7.Application of HPLC to the determination of Balofloxacin

Material	Column	Mobile phase	Detection
Formulation	Welchrom C_{18} column 5 µm	Acetonitrile ($70:30 \text{ v/v}$)	UV, 293 nm
Formulation	RP C ₁₈ F 254	Methanol : water : triethylamine (6: 4: 0.5 V/V/V)	UV, 266 nm
Formulation	Welchrome C ₁₈	Phosphate buffer : acetonitrile (70: 30 % V/V)	UV, 293 nm

Prulifloxacin: Prulifloxacin is a prodrug and it is metabolized in the body to convert the active compound ulifloxacin. Prulifloxacin appeared as effective as Ciprofloxacin, co-amoxiclav in the treatment of bronchitis exacerbations or lower urinary tract infections. It was tolerated as well as Ciprofloxacin. Prulifloxacin has a long half-life and may therefore be taken only Once a day. Prulifloxacin has been approved for use in Japan. In the United States, it is undergoing phase III clinical trials for the treatment of traveler's diarrhea. It has been proven that Prulifloxacin is more effective than Ciprofloxacin in the treatment of adults with complicated urinary tract infections.

PRF is not official in any pharmacopoeia. Literature survey revealed that few Chromatographic methods have been reported, which include LC-MS, HPLC, with fluorescence detection, capillary zone electrophoresis and capillary electrophoresis chemiluminescence methods for the determination of the active metabolite of Prulifloxacin in human plasma and other biological fluids. It has been also reported that there is a sensitive determination of Prulifloxacin by its fluorescence enhancement on terbium (III)-sodium dodecyl benzene sulfonate system. The structure of Prulifloxacin is represented in the Figure 9 and the Application of HPLC to the determination of Prulifloxacin is represented in Table 8.

Figure.9.Prulifloxacin drug structure

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences Table.8. Application of HPLC to the determination of Prulifloxacin

Material	Column	Mobile phase	Detection
Formulation	Phenomenex C ₁₈ column	Acetonitrile (60 : 40)	UV, 275 nm
Tablet dosage form	C ₁₈ column	KH ₂ PO ₄ buffer : acetonitrile pH 7.3	UV, 273 nm
		with triethylamine $(10:90 \text{ V/V})$	
Tablet dosage form	C ₁₈ column	Acetonitrile : water : triethylamine	UV, 273 nm
_		(40:60:0.3 % V/V/V) pH 3.3	

Moxifloxacin: Moxifloxacin is a fourth-generation synthetic fluoroquinolone antibacterial agent developed by Bayer AG (initially called BAY 12-8039). It is marketed worldwide (as the hydrochloride) under the brand names Avelox, Avalox, and Avelon for oral treatment. In most countries, the drug is also available in parenteral form for intravenous infusion. Moxifloxacin is also sold in an ophthalmic solution under the brand names Vigamox, Moxeza for the treatment of conjunctivitis (pink eye). A united state patent application was submitted on 30 June 1989, for Avelox (Moxifloxacin hydrochloride). In 1999 Avelox was approved by the United States Food and Drug Administration (FDA) for use in the United States.

In the United States, Moxifloxacin is licensed for the treatment of acute bacterial sinusitis, acute bacterial exacerbation of chronic bronchitis community acquired pneumonia, complicated and uncomplicated skin and skin structure infections, and complicated intra-abdominal infections. In the European Union, it is licensed for acute bacterial exacerbations of chronic bronchitis, non-severe community-acquired pneumonia, and acute bacterial sinusitis. Based on its investigation into reports of rare but severe cases of liver toxicity and skin reactions, the European medical agencies recommended in 2008 that the use of the oral (but not the IV) form of Moxifloxacin be restricted to infections in which other antibacterial agents cannot be used or have failed. In the US, the marketing approval does not contain these restrictions, though the label contains prominent warnings against skin reactions.

Avelox (Moxifloxacin) was launched in the United States in 1999 and is currently marketed in more than 80 countries worldwide. In the United States, Avelox is marketed by Bayer's partner Merck. In 2011 the FDA added two boxed warnings for this drug in reference to spontaneous tendon ruptures and the fact that Moxifloxacin may cause worsening of myasthenia gravis symptoms, including muscle weakness and life-threatening breathing problems. The structure of Moxifloxacin is represented in the Figure 10 and the Application of HPLC to the determination of Moxifloxacin is represented in Table 9.

Figure.10.Moxifloxacin drug structure Table.9.Application of HPLC to the determination of Moxifloxacin

Material	Column	Mobile phase	Detection	
Formulation	Welchrom C ₁₈ Column	10mM Phosphate Buffer(pH-3.1): Acetonitrile	UV, 293 nm	
		(70:30 v/v)		
Formulation	Phenomenox C ₁₈ column	Ammonium formate : acetonitrile (70:30 v/v)	UV, 295nm	
Tablet dosage form	Welchrom C ₁₈ column	Buffer 2.5 with triehylamine and	UV, 293 nm	
-		orthophosphoric acid : methanol (55 : 45 v/v)		
Formulation	Hypersil BDS C ₁₈	Acetonitrile : Buffer : pH -4 ($60:40 \text{ v/v}$)	UV, 294 nm	
	column			

Sparfloxacin: The new fluoroquinolone Sparfloxacin (SPF) is (5-Amino-1- cyclopropyl-7-(*cis*-3,5-dimethyl-1piperazinyl)-6,8-difluoro-1,4 dihydro-4-oxo-3-quinolinecarboxylic acid is a broad spectrum fluorinated a quinolone antibiotic used in the treatment of bacterial infections and commonly prescribed for infective opthalmitis and sinusitis, acute exacerbation of chronic bronchitis, community-acquired pneumonia, eye infections, urinary tract infection. SPF is a new difluorinated quinolone with similar activity for gram-negative and gram-positive bacteria and a spectrum of activity that embraces anaerobes, Chlamydiatrachomatis,

April – June 2014

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

Mycoplasma and mycobacteria. The quinolones and SPF compounds are bactericidal in nature. The molecular target of quinolones is considered to be DNA gyrase, since quinolones inhibit gyrase activities and gyrases isolated from quinolone-resistant strains are resistant to quinolones. Escherichia coli gyrase consists of subunits A and B which are the products of the gyrA and gyrB genes, respectively since the unexpected finding by Shen and Pernet that [3H] Norfloxacin binds to DNA but not to purified gyrase it has been proposed that SPF exerts its antibacterial activity by inhibiting DNA gyrase which is a bacterial topoisomerase. DNA gyrase is an essential enzyme which controls DNA topology and assists in DNA replication, repair, and deactivation. The structure of Sparfloxacin is represented in the Figure 11 and the Application of HPLC to the determination of Sparfloxacin is represented in Table 10.

Figure 11: Sparfloxacin drug structure.

Material	Column	Mobile phase	Detection
Formulation	Welchrom $C_{18}5 \ \mu m$	Acetonitrile (70 : 30 v/v)	UV, 291 nm
Human plasma	Novapak C _{18,} 4 µm	5% acetic acid / acetonitrile	UV, 364 nm
		/methanol (14:3:3)	
Serum and urine	Nucleosil 100SA, 5 µm	Acetonitrile / $0.1 \text{ M H}_3\text{PO}_4(3:1)$	Flour 295, 525 nm
Tablet	Purospher star C_{18}	Methanol : water : acetonitrile	UV, 232 nm
		(54: 41 : 5 v/v/v pH 2.7)	
Formulation	Welchrom C ₁₈	Phosphate buffer (pH 2.8):	UV, 291nm
		acetonitrile (70 : 30 v/v)	
Tablet dosage form	C_8	Methanol & 0.02 M phosphate	UV, 270 nm
		buffer pH 3.0 (60 : 40 v/v)	
Formulation	Chromolith Rp- C ₁₈	Methanol : $0.025M \text{ KH}_2\text{PO}_4 \text{ pH} 3$	UV, 290 nm
		(20:80 v/v)	

Table.10. Application of HPLC to the determination of Sparfloxacin

Gatifloxacin: Gatifloxacin sold under the brand names Gatiflo, Tequin and Zymar, is an antibiotic of the fourthgeneration fluoroquinolone family, that like other members of that family, inhibits the bacterial enzymes DNA gyrase and topoisomerase IV. Bristol-Myers Squibb introduced Gatifloxacin in 1999 under the proprietary name Tequin for the treatment of respiratory tract infections, having licensed the medication from Kyorin Pharmaceutical Company of Japan. Allergan produces it in eye-drop formulation under the names Zymar and Zymaxid. Gatifloxacin also available as tablets and in various aqueous is solutions for intravenous therapy in many countries. The structure of Gatifloxacin is represented in the Figure 12 and the Application of HPLC to the determination of Gatifloxacin is represented in Table 11.

Figure.12.Gatifloxacin drug structure

Journal of Chemical and Pharmaceutical Sciences

Table.11.Application of HPLC to the determination of Ga	atifloxacin
---	-------------

Material	Column	Mobile phase	Detection
Tablet dosage form	Hypersil C ₁₈	Acetonitrile: methanol : water ($50 : 37.5 : 12.5 \text{ v/v/v}$)	UV, 280 nm
Bulk & dosage form	C ₁₈	Acetonitrile : 0.025 M potassium dihydrogen phosphate buffer (50 : 50 v/v)	300 nm

HPLC is most frequently applied technique for the determination of fluoroquinolones in biological fluids, blood serum, fish feed and tablet formulations. Table 12 represents the HPLC methods for the simultaneous estimation of different drugs of quinolone antibacterials.

Table.12. HPLC methods for the simultaneous determination of different drugs of quinolone	anti-
bacterials	

Drugs	Material	Column	Mobile phase	Detection
Nor., dif., cipro., sara	Fish feed	Alltech C ₁₈ ,	Sodium citrate –citric acid, pH2.4/	UV,280 nm
		10 µm	acetonitrile (13:7)	
Several quinolons	Fish and	Nucleosil C _{18,}	0.02 M acetonitrile / THF (1:1)	Flour, 336
	animal tissues	5 µm		and 375 nm
OA, NA, fl., POA,	Fish and meat	Wakosil II s	Phosphate buffer, pH 2.5 /acetonitrile	UV, 280 nm
beno., dano., ofl.		C ₁₈ , HG	(65:35v/v)	and Flour,
				325 / 365 nm
Cipro, enox, flero.,	Raw material	Lichrosphere	Tetrabutylammonium bromide in	Potentiometry
nor, ofl, PMA		100 C ₁₈ 5µm	H ₃ PO ₄ , pH 3.89 / acetonitrile (93 : 7)	
Fluoroquinolones	Human plasma	C ₁₈	Acetonitrile / phosphate buffer pH 2	UV, 257 nm
Fluroquinolones	Clinical	Lichrosphere	Acetonitrile $/ 0.4\%$ M citric acid (1:5)	Flour, 275,
	specimens	100 C _{18,}		340 nm
		10µm		
Quinolonic and	Urine	Nova pack	Acetonitrile / 0.4 % acetic acid (7 : 18)	UV, 265 nm
cinolonic acid		C ₁₈		
derivatives				
-Eno.+ ofl .+ nor.,	Dosage forms	Shimpak	Tetrabutylammonium hydroxide/	UV, 280 nm
cipro+pef. + enro		CLC- ODS	acetonitrile (9:1)	
-Beno. + enro.+ dano.+	Chicken	Wakosil II 5	Phosphate buffer pH 2.4 acetonitrile (Flour, 245,
ofl	tissues	C ₁₈	4:1)	445 nm
Gati, levo, lome, Peflo	Tablets and	Lichrosper	Water : acetonitrile	279-295 nm
	injections	100 RP-C ₁₈	(80:20 v/v)	
Pipemidic aci marbo	Urine and	RP C_{18}	Methanol – ACN- 10mM citrate buffer	UV,280 nm
eno, ofl, nor, cipro,	pharmaceutical		at pH 3.5., 4.5	
dano, lome, enro, sara,	samples			
diflo, oxolonic acid,				
nalidixic acid,				
flumequine and				
piromidic acid.				
Levo, cipro, gati,	Human plasma	Phenomenex	35% (v/v) Aqueous acetonitrile:	235, 254,
mox1, trova, c1no		ODS C_{18}	tetrabutyl-ammonium acetate, sodium	275, 300 nm
			dodecyl sulphate and citric acid	
			(pH 3.4)	

Abbreviations: nor:norfloxacin; NA:nalidixic acid; ofl: Ofloxacin; cino:cinoxacin; dif:difloxacin; fl:flumequine; pef: pefloxacin; fluor:fluorometrically; Cipro:Ciprofloxacin; PMA:Pipemidic acid; OA:Oxolonic acid; Sara:sarafloxacin; beno: Benofloxacin; dano:Danofloxacin; POA:Piromidic acid; eno:Enoxacin; enro:Enrofloxacin; trova:travafloxacin; levo:Levofloxacin; gati:Gatifloxacin; moxi: Moxifloxacin; lome: lomefloxacin

CONCLUSION

This paper describes the individual and simultaneous estimation of different important class of Quinolone Antibacterial drugs. A number of HPLC methods have been reported for analyzing fluoroquinolones in biological fluids and pharmaceutical formulations for the determination of fluoroquinolones individually or in combination. Presentation of various methods for the determination of fluoroquinolones in formulation and in body fluids is useful for the researchers who are interested to study this class of antibacterials further. The information compiled

April – June 2014

ISSN: 0974-2115

Journal of Chemical and Pharmaceutical Sciences

in this article reduces valuable time and money spent on the analytical method development in the analysis of fluoroquinolines from the first step onwards. A researcher can use this information and go a point forward.

REFERENCES

Arayne Sultana, Siddiqui FA, Optimization of Levofloxacin Analysis By RP-HPLC using Multivariate Calibration curve technique 20(2), 2007, 100-6.

Argekar AP, Shah SJ, Stability indicating HPLC method for the simultaneous estimation of Naldixic acid and Metronidazole/ Metronidazole benzoate in their formulations, Indian Drugs, 34(9), 1997, 520-526.

Catherine M Oliphant, Gary M Green, Quinolones: A Comprehensive Review, Am Fam Physician, 65(3), 2002, 455-465.

Davis R. Bryson H. M, Levofloxacin, Drugs, 47 (4), 1994, 677-700.

Dewani AP, Barik BB, Kanungo SK, Wattyani BR and Chandewar AV, Development and Validation of RP-HPLC Method for the Determination of Moxifloxacin in Presence of Its Degradation Products, 6 (4), 2011, 192-200.

Emmerson AM, Jones AM, The Quinolnes: Decade of development and use, The journal of Anti-microbial chemotherapy 51, 2003, 13-20

Halkar UP, Rane SH, Bhandari NP, High-performance liquid chromatographic determination of Naldixic acid, Indian Drugs, 34, 1997, 302.

Ichikawa N, Naora K, Hayashibara M, Iwamoto K, High-performance liquid chromatographic determination of ciprofloxacin in rat brain and cerebrospinal fluid, Chem Pharm Bull (Tokyo), 38(10), 1990, 2884-6.

Kawahara S, Chemotherapeutic agents under study, Nippon Rinsho, 56 (12), 1998, 3096–9.

Lalitha Devi, Chandrasekhar KB, A Validated Stability indicating RP-HPLC method for Levofloxacin in presence of degradation products, 50(5), 2009, 710-7.

Laura JV Piddock, Zhu M, Mechanism of action of Sparfloxacin against and mechanism of resistance in Gramnegative & Gram-positive bacteria, Antimicrobial agents & chemotherapy, 35(11), 1991, 2423-27.

Lesher GY, Froelich ED, Gruet MD, Bailey JH, Brudage RP, 1,8-Naphthyridine derivatives. Anew class of chemotherapeutic agents, J. Med. Pharm. Chem, 5, 1962, 1063-1068.

Naheed W, Sheikh Alok, Tripathi S, Chitra V, Avijit Choudhury and Anil P Dewani, Development and validation of RP-HPLC assay for Levofloxacin in rat plasma and saliva : application to pharmacokinetic studies 5(13), 2011, 1612-1618.

Nelson JM, Chiller TM, Powers JH, Angulo FJ, Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story, Clin Infect Dis, 44 (7), 2007, 977–980.

Nelson JM, Chiller TM, Powers JH, Angulo FJ, Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story, Clin Infect Dis, 44 (7), 2007, 977.

Padeĭskaia EN, Norfloxacin: more than 20 years of clinical use, the results and place among fluoroquinolones in modern chemotherapy for infections, Antibiot Khimioter, 48 (9), 2003, 28–36.

Raghabendra Narayan Singh, Shisir Sahoo, Umashankar Mishra, Bamakanta Garnaik, Sudhir Kumar Sahoo and Deepak Hati, Stability indicating RP-HPLC method development and validation of Moxifloxacin, 4(1), 2014, 131-140.

Ravisankar P and Devalarao G, Simultaneous separation of third and fourth generation six fluoroquinolones by isocratic high-performance liquid chromatography: application to Moxifloxacin determination in pharmaceutical dosage forms, 4(3), 2013, 663 – 677.

Ravisankar P, Devadasu CH, Srinivas Babu P, Devala Rao G and Gananathamu S, Development and validation of new RP-HPLC method for the estimation of Prulifloxacin in pharmaceutical dosage forms, 8(1), 2010, 433-444.

Ravishankar P, Devala Rao G, Devadasu CH, A novel validated RP-HPLC method for the determination of Balofloxacin in bulk and pharmaceutical dosage forms, 3(2), 2013, 127-136.

Sato K, Inoue Y, Fujii T, Aoyama H, Inoue M, and Mitsuhashi S, Purification and properties of DNA gyrase from a fluoroquinolone-resistant strain of *Escherichia coli*, Antimicrob Agents Chemothe, 30, 1986, 777-780.

Singh S, Singh UK, Singh RM, Singh GN, Mathur SC, Saini PK, Yadav A, Gupta V, Duggal D. Development and validation of a RP-HPLC method for estimation of Prulifloxacin in tablet dosage form, 73(5), 2011, 577-9.

Sugino A, Peebles CL, Kreuzer KN, and Cozzarelli NR, Mechanism of action of nalidixic acid: purification of Escherichia coli nal A gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme, Proc. Natl. Acad. Sci, 74, 1977, 4767-4771.

Wenzel TJ, Zomlefer K, Rapkin SB, Keith RH, Lanthanide Luminescence Detection of Bleomycins and Nalidixic Acid, J.Liquid Chromatogr, 18, 1995, 1473-1486.